mk book

  • 신간도서
  • 구분선
  • MK평점
  • 구분선
  • 북 뉴스
  • 구분선
  • 이벤트
  • 구분선
  • My book list
  • 구분선
  • Ranking list
  • 매경출판
  • 구분선
  • 독서클럽
  • 구분선
  • 북다이제스트
도서 상세
분야별신간 이미지

데이터 사이언스 입문

김진,최정아 지음마소캠퍼스

18,000원

책 소개
본 도서는 빅데이터, R, Python, 인공지능 등 모호했던 개념들을 명확하게 이해하고, 단기간에 데이터 사이언스 전체 프로세스를 파악하여 실무에 즉시 적용 가능한 데이터 분석 기법들을 알아본다. 또한 데이터 분석에 필요한 통계 지식을 어려운 통계 기호를 전혀 사용하지 않고, 사례를 통해 통계적 시각을 확보할 수 있다. 이 책을 통해 실무자들은 현실의 의사결정 과정에 데이터 분서 스킬을 적용함으로써 기업의 급속 성장을 꾀할 것이다.

이 책의 주요 주제는 다음과 같다.
■데이터 사이언스의 정의와 필수 역량
■데이터 분석 목적에 맞는 데이터 수집 방법 및 가공 방법
■방대한 데이터를 한눈에 알아볼 수 있는 데이터 시각화 방법
■데이터 분석에 필요한 통계 이해를 위해 복잡하고 어려운 통계 기호를 전혀 사용하지 않고 세상을 통계로 이해하는 시각 확보
■데이터 분석 사례를 통해 배우는 실무 즉시 적용 가능한 데이터 분석 스킬 소개
■스스로 데이터를 공부하는 인공지능(AI) 학습 시스템인 머신러닝과 딥러닝의 이해
■데이터 사이언스 입문자를 위한 다양한 데이터 분석 도구 추천

모든 것이 데이터로 이루어진 시대, 쉽고 실용적인 데이터 사이언스 입문서로 데이터 분석에 뛰어들어라
개념 확립부터 구체적 적용 방법까지 배우는 데이터 분석, 풍부한 국내외 사례와 함께 제시하는 통계 활용법

정보의 시대를 거쳐 빅데이터 시대로 넘어오면서 수많은 정보와 데이터가 생성되었고, 사회 여러 분야에서 데이터가 폭넓게 활용되고 있다. 기존의 무의미하게 보였던 데이터들이 현재는 미래 비즈니스의 성패를 가르는 중요한 자원이 되었다. 이에 많은 기업들은 비즈니스 혁신에 유의미한 통찰을 얻기 위해 다양한 빅데이터 분석 플랫폼을 개발하여 고객의 니즈를 정밀하게 파악하고 있다.
그러나 데이터 분석이 가져다 주는 이점들만 인지하고 있을 뿐, 활용하는 방법을 모른다면 무한한 가능성의 데이터는 그저 무용지물이다.
그렇다면 데이터 분석, 어떻게 기본기를 다져야 할까?
이 책은 데이터 분석 역량을 갖추는 것을 돕기 위해서 ‘데이터 사이언스 프로세스’라는 프레임워크를 기반으로 설계했으며, 듣기만해도 어려운 데이터 분석 이론들을 일반인들도 쉽게 이해할 수 있도록 다채로운 사례와 함께 설명하고 있다. 나아가 깊이 있는 데이터 분석에 필요한 통계 지식은 전문 용어나 수식으로 설명해주는 대신, 유용한 사례와 함께 각 검증 방법을 설명하여 실생활에서 통계에 대한 아이디어를 얻을 수 있다.
더불어, 저자 김진, 최정아는 10년이상 경력의 Education/마케팅전문가로 현장에서 얻은 경험을 바탕으로 현직 실무자로서 알려줄 수 있는 즉시 적용 가능한 분석 방법을 제시한다. 데이터 분석 역량을 높여줄 『데이터 사이언스 입문』 도서를 통해 여러분이 담당하고 있는 실무 영역에서의 유의미한 인사이트를 얻길 바란다.

[책속으로 이어서]
“데이터 사이언스 분야에 입문할 때 R과 Python 중 어느 것을 배울지 많이 고민될 것이다. 간단한 기준으로 접근하자. 내가 원하는 분석 모델을 만들어 낼 기술적인 자신감이 있고 다양한 분야에서 자유롭게 활용하고 싶다 면, 개발 언어에 가까운 Python이 적합할 수 있다. 그러나, 개발자가 될 생각은 없고 조사 및 실험 결과, 사회의 다양한 데이터를 탐색해 패턴을 찾아 내며 결과를 시각화하는 것이 중요한 연구 및 비즈니스 목적이 강하다면 R 로 입문할 것을 추천한다.”
-p218, 『대표적인 데이터 분석 도구』 중에서
저자소개
김진
김진 대표는 오라클, 네이버를 거쳐 중국 네이버 개발 아웃소싱 센터를 설립 및 지휘하였으며, 서울대 MBA 졸업 후 글로벌모바일 기업인 Obigo로 옮겨 데이터 분석에 기반한 성과 관리시스템 도입 등 국내외 다양한 사업 영역을 개척하였다. 2010년에는 게임웹진 플레이포럼 M&A 후 데이터 분석과 디지털마케팅을 실무에 본격 도입해 코리안클릭 수치 기준으로 월평균 활성 유저(MAU) 238만, 월 평균 페이지뷰(PV)수 1,700만을 달성하였다. 개발자, 전문 경영인의 길을 걸어온 사업가로서 폭넓은 경험과 IT 기술을 융합해 현재는 기업의 ROI를 높여줄 실무 전문가 교육에 힘 쓰고 있다. 김진 대표가 경영하는 마소캠퍼스는 가시적인 성과를 내는 디지털 마케팅과 데이터 분석의 Actionable Contents 교육으로 120여 개의 온오프라인 프로그램이 인기리에 운영 중이다. 저서로는 [디지털 마케팅 개론], [구글 애널리틱스를 활용한 데이터 분석 입문], [매출을 높이는 실전 구글 광고 마케팅]과 [앱마케팅, 이게 진짜 안드로이드 마케팅이다]가 있으며, 관련 도서는 한글, 영문, 일본어로 글로벌 출간되었다. 더불어 한양대 경영학과와 이화여대 기업가 센터 겸임교수로서 학생들의 ‘디지털 마케팅/ 그로스해킹/ 데이터 분석’ 역량을 높이는 소명을 맡고 있다.

최정아
최정아 컨설턴트는 연세대 경영학 석사로 연세-게이오(日) 대학간 원격교육을 담당하다 자리를 옮겨 플레이포럼 편집장으로 7년간 MAU 238만의 커뮤니티를 운영하며 대중이 열광하는 콘텐츠를 제작해왔다. 이후 마소캠퍼스에 합류해 소셜미디어 콘텐츠 마케팅으로 쟁쟁한 기업들이 수 년간 막대한 인력과 예산을 들여 쌓은 인지도를 6개월 만에 따라 잡는 성과를 이뤄내기도 했다. 다년간 실무에서 직접 경험하고 터득한 현장전문가로서 비즈니스 데이터를 활용해 실제로 성과를 만들어 내는 실용적인 지식과 알짜 팁을 주로 다룬다. 세종대, 한양대, 성신여대, 이화여대에서 강의 교수로도 출강 중이다.
목차
PART 1 데이터 사이언스의 이해
01 데이터 분석의 목적은 더 나은 의사 결정이다
02 도대체 데이터란 무엇인가?
03 데이터 분석에 필요한 4가지 역량

PART 2 데이터 분석 프로세스와 데이터 취합
01 데이터 분석 프로세스
02 데이터 취합과 크롤링
03 데이터 전처리

PART 3 탐색적 데이터 분석과 기술통계
01 탐색적 데이터 분석이란?
02 기술 통계량과 차트
03 분산과 표준편차는 변동성을 가리킨다
04 일반적인 것과 특별한 것

PART 4 샘플 데이터로 전체를 예측할 수 있는가?
01 전수조사의 문제점
02 몬테카를로 동전 실험과 표본오차
03 중심 극한의 정리
04 표준오차와 적정 표본 수
05 표본오차와 비표본오차
06 무작위 추출과 근거 피라미드

PART 5 가설 수립과 유의성 검정
01 네이만-피어슨 추론과 베이즈 추론
02 표준 통계학의 역사
03 귀무가설과 대립가설
04 유의수준과 유의확률
05 표준 통계학의 가설 검정 단계
06 유의확률 계산 도구
07 언제 어떤 검정법이 필요한가?
08 카이제곱 검정: 월마트 영수증 분석
09 T 검정: 두 표본 집단간의 평균의 비교
10 회귀분석: 노벨상을 수여한 구호 사업

PART 6 머신러닝과 데이터 분석 모델링
01 알고리즘과 데이터 분석 모델
02 데이터 분석 모델의 복잡도와 성능
03 인공지능과 머신러닝, 그리고 딥러닝
04 머신러닝이 탁월한 효과를 발휘하는 순간
05 베이즈 추론과 축차합리성
06 널리 알려진 머신러닝 알고리즘

PART 7 대표적인 데이터 분석 도구
01 알고리즘 구현 언어
02 입문자 추천 데이터 분석 도구
03 자, 이제 남은 건?
04 저자의 말

Appendix - 주요 데이터 분석 도구 소개